NONTECHNICAL SOIL DESCRIPTIONS

These descriptions describe soil properties or management considerations specific to a soil map unit and components of map units. These reports are generated from the National Soil Information System soil database for distribution to land users.

- AdA--Adelphia Fine Sandy Loam, 0 To 2 Percent Slopes
 Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32.
 This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- AdB2--Adelphia Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- Adc2--Adelphia Fine Sandy Loam, 5 To 10 Percent Slopes, Moder Ately Eroded
 Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32.
 This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- AhA--Adelphia Silt Loam, 0 To 2 Percent Slopes
 Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32.
 This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- AhB2--Adelphia Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- AuB2--Aura Gravelly Loam, 2 To 6 Percent Slopes, Moderately E Roded Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Auc2--Aura Gravelly Loam, 6 To 12 Percent Slopes, Moderately Eroded
 Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- Auc3--Aura Gravelly Loam, 6 To 12 Percent Slopes, Severely Er Oded
 Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- AuD--Aura Gravelly Loam, 12 To 20 Percent Slopes
 Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- AvE--Aura And Croom Gravelly Loams, 20 To 50 Percent Slopes
 Aura component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. This component is not a hydric soil.

Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

- BeA--Beltsville Fine Sandy Loam, 0 To 2 Percent Slopes
 Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- BeB2--Beltsville Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- BeC2--Beltsville Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- BlA--Beltsville Silt Loam, 0 To 2 Percent Slopes
 Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- BlB2--Beltsville Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded
 Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- BlC2--Beltsville Silt Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- BlC3--Beltsville Silt Loam, 5 To 10 Percent Slopes, Severely Eroded
 Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- BlD3--Beltsville Silt Loam, 10 To 15 Percent Slopes, Severely Eroded
 Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.
- BmB--Beltsville-Urban Land Complex, 0 To 5 Percent Slopes
 Beltsville component makes up 50 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

BmC--Beltsville-Urban Land Complex, 5 To 15 Percent Slopes
Beltsville component makes up 50 percent of the map unit. The assigned Kw erodibility factor is
.43. This soil is moderately well drained. The slowest permeability within 60 inches is slow.
Available water capacity is very high and shrink swell potential is low. This soil is not flooded
and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline
horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Bn--Bibb Sandy Loam
Bibb component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20.
This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil.

Bo--Bibb Silt Loam
Bibb component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28.
This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil.

Br--Bibb-Urban Land Complex
Bibb component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28.
This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

BtB2--Butlertown Silt Loam, 0 To 5 Percent Slopes, Moderately Eroded
Butlertown component makes up 90 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches
is slow. Available water capacity is very high and shrink swell potential is low. This soil is not
flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no
saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric
soil.

CaB2--Chillum Silt Loam, 0 To 6 Percent Slopes, Moderately Er Oded Chillum component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

CaC2--Chillum Silt Loam, 6 To 12 Percent Slopes, Moderately E Roded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

CaC3--Chillum Silt Loam, 6 To 12 Percent Slopes, Severely Ero Ded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

CaD2--Chillum Silt Loam, 12 To 20 Percent Slopes, Moderately Eroded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

CbB--Chillum-Urban Land Complex, 0 To 6 Percent Slopes Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CbC--Chillum-Urban Land Complex, 6 To 12 Percent Slopes
Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CbE--Chillum-Urban Land Complex, 12 To 35 Percent Slopes
Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CcC3--Christiana Clay, 5 To 10 Percent Slopes, Severely Erode D Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

CcD3--Christiana Clay, 10 To 15 Percent Slopes, Severely Erod Ed Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

CcE3--Christiana Clay, 15 To 35 Percent Slopes, Severely Erod Ed Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

CdA--Christiana Fine Sandy Loam, 0 To 2 Percent Slopes
Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
.43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available
water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is
not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in
nonirrigated land capability class 2s. This component is not a hydric soil.

CdB2--Christiana Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

- CdC2--Christiana Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- CdD2--Christiana Fine Sandy Loam, 10 To 15 Percent Slopes, Mo Derately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- CeA--Christiana Silt Loam, 0 To 2 Percent Slopes Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil.
- CeB2--Christiana Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- CeC2--Christiana Silt Loam 5 To 10 Percent Slopes Moderately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- CeD2--Christiana Silt Loam, 10 To 25 Percent Slopes, Moderate Ly Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- CfB--Christiana-Urban Land Complex, 0 To 5 Percent Slopes Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- CfC--Christiana-Urban Land Complex, 5 To 15 Percent Slopes Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- CfE--Christiana-Urban Land Complex, 15 To 40 Percent Slopes
 Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available
 water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is
 not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in
 nonirrigated land capability class 7e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Cg--Clay Pits

Clay Pits component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Ch--Codorus Silt Loam

Codorus component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Ck--Codorus-Urban Land Complex

Codorus component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Cl--Colemantown Loam

Colemantown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

CmA--Collington Fine Sandy Loam, 0 To 2 Percent Slopes
Collington component makes up 100 percent of the map unit. All areas are prime farmland. The
assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within
60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no
saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric
soil.

CmB2--Collington Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

CmC2--Collington Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

CmC3--Collington Fine Sandy Loam, 5 To 10 Percent Slopes, Severely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

- CmD2--Collington Fine Sandy Loam, 10 To 15 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- CmD3--Collington Fine Sandy Loam, 10 To 15 Percent Slopes, Se Verely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- CmE2--Collington Fine Sandy Loam, 15 To 40 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.
- CmE3--Collington Fine Sandy Loam, 15 To 30 Percent Slopes, Se Verely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- CnB2--Collington Loamy Fine Sand, 0 To 5 Percent Slopes, Mode Rately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil.
- CnC2--Collington Loamy Fine Sand, 5 To 10 Percent Slopes, Mod Erately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil.
- CnD2--Collington Loamy Fine Sand, 10 To 15 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- CoA--Collington Silt Loam, 0 To 2 Percent Slopes
 Collington component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within
 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
 low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no
 saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric
 soil.
- CoB2--Collington Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- CoC3--Collington Silt Loam, 5 To 10 Percent Slopes, Severely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

CpB--Collington-Urban Land Complex, 0 To 5 Percent Slopes Collington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CpC--Collington-Urban Land Complex, 5 To 15 Percent Slopes
Collington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is
.28. This soil is well drained. The slowest permeability within 60 inches is moderately slow.
Available water capacity is very high and shrink swell potential is low. This soil is not flooded
and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in
nonirrigated land capability class 4e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

- Cr--Comus Silt Loam

 Comus component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.
- CsB2--Croom Gravelly Loam, 3 To 8 Percent Slopes Moderately E Roded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- CsC2--Croom Gravelly Loam, 8 To 15 Percent Slopes, Moderately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- CsC3--Croom Gravelly Loam, 8 To 15 Percent Slopes, Severely E Roded
 Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e.
 This component is not a hydric soil.
- CtB2--Croom Gravelly Sandy Loam, 3 To 8 Percent Slopes, Moder Ately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- CtC2--Croom Gravelly Sandy Loam, 8 To 15 Percent Slopes, Mode Rately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- CtC3--Croom Gravelly Sandy Loam, 8 To 15 Percent Slopes, Seve Rely Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

CtD2--Croom Gravelly Sandy Loam, 15 To 25 Percent Slopes, Mod Erately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

CuB--Croom-Urban Land Complex, 0 To 8 Percent Slopes Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CuC--Croom-Urban Land Complex, 8 To 15 Percent Lopes
Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e.
This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

CuE--Croom-Urban Land Complex, 15 To 35 Percent Slopes
Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 6e.
This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

DoA--Donlonton Fine Sandy Loam, 0 To 2 Percent Slopes
Donlonton component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 21 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

DoB2--Donlonton Fine Sandy Loam, 2 To 5 Percent Slopes, Moder Ately Eroded Donlonton component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 21 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Ek--Elkton Silt Loam

Elkton component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

ElB--Elkton Fine Sandy Loam, Thick Surface, 0 To 5 Percent S Lopes
Elkton component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

EmA--Elsinboro Loam, 0 To 2 Percent Slopes
Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.

EmB2--Elsinboro Loam, 2 To 5 Percent Slopes Moderately Eroded Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

EnA--Elsinboro Sandy Loam, 0 To 2 Percent Slopes
Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches
is moderate. Available water capacity is very high and shrink swell potential is low. This soil is
not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are
no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric
soil.

EnB2--Elsinboro Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded Elsinboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Enc2--Elsinboro Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Elsinboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

EuB--Elsinboro-Urban Land Complex, 0 To 5 Percent Slopes
Elsinboro component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in
nonirrigated land capability class 1. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

F1--Fallsington Loam
Fallsington component makes up 100 percent of the map unit. Prime farmland if drained. The assigned
Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60
inches is moderately slow. Available water capacity is very high and shrink swell potential is low.
This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches.
There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a

hydric soil.

Fs--Fallsington Sandy Loam
Fallsington component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Fu--Fallsington-Urban Land Complex Fallsington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

GaB--Galestown Gravelly Loamy Sand, 0 To 8 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4s. This component is not a hydric soil.

GaC--Galestown Gravelly Loamy Sand, 8 To 15 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

GdB--Galestown Loamy Sand, 0 To 8 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil.

GdC--Galestown Loamy Sand, 8 To 15 Percent Slopes
Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
.17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid.
Available water capacity is high and shrink swell potential is low. This soil is not flooded and is
not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in
nonirrigated land capability class 7s. This component is not a hydric soil.

GeB--Galestown-Evesboro Loamy Sands, 0 To 8 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

GeC--Galestown-Evesboro Loamy Sands, 8 To 15 Percent Slopes
Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid.
Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

GmB--Galestown-Urban Land Complex, 0 To 8 Percent Slopes
Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid.
Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

GmC--Galestown-Urban Land Complex, 8 To 15 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

GnC2--Glenelg Loam, 8 To 15 Percent Slopes, Moderately Eroded Glenelg component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

GoB--Glenelg-Urban Land Complex, 0 To 8 Percent Slopes Glenelg component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Gp--Gravel And Borrow Pits
Gravel And Borrow Pi component makes up 95 percent of the map unit. The assigned Kw erodibility
factor is .02. The slowest permeability within 60 inches is rapid. Available water capacity is low
and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is
deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s.
This component is not a hydric soil.

Ha-Hatboro Silt Loam
Hatboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49.
This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 3 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

HcC3--Howell Clay Loam, 6 To 12 Percent Slopes, Severely Erod Ed
Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

HcD3--Howell Clay Loam, 12 To 20 Percent Slopes, Severely Ero Ded
Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

HoB2--Howell Fine Sandy Loam, 2 To 6 Percent Slopes, Moderate Ly Eroded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

HoC2--Howell Fine Sandy Loam, 6 To 12 Percent Slopes, Moderat Ely Eroded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

- HwB2--Howell Silt Loam, 0 To 6 Percent Slopes, Moderately Ero Ded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- HwC2--Howell Silt Loam, 6 To 12 Percent Slopes, Moderately Er Oded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- HwD2--Howell Silt Loam, 12 To 20 Percent Slopes, Moderately E Roded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- HwE2--Howell Silt Loam, 20 To 35 Percent Slopes, Moderately E Roded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.
- Hy--Hyde Silt Loam
 Hyde component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17.
 This soil is very poorly drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- Ik--Iuka Fine Sandy Loam
 Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- ImA--Iuka Sandy Loam, Local Alluvium, 0 To 2 Percent Slopes
 Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- ImB--Iuka Sandy Loam, Local Alluvium, 2 To 5 Percent Slopes
 Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- In--Iuka Silt Loam
 Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

ToA--Iuka Silt Loam, Local Alluvium, 0 To 2 Percent Slopes
Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

IOB--Iuka Silt Loam, Local Alluvium, 2 To 5 Percent
Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw
erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60
inches is moderate. Available water capacity is very high and shrink swell potential is low. This
soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches.
There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not
a hydric soil.

Iu--Iuka-Urban Land Complex
Iuka component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is moderately well drained. The slowest permeability within 60 inches is moderate.
Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Ix--Iuka-Urban Land Complex, Local Alluvium
Iuka component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is moderately well drained. The slowest permeability within 60 inches is moderate.
Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Jo--Johnston Silt Loam
Johnston component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20.
This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid.
Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil.

Johnston component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil.

Ju--Johnston-Urban Land Complex Johnston component makes up 55 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil.

Urban Land component makes up 45 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

KeA--Keyport Fine Sandy Loam, 0 To 2 Percent Slopes
Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

- KeB2--Keyport Fine Sandy Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- KeC2--Keyport Fine Sandy Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- KpA--Keyport Silt Loam, 0 To 2 Percent Slopes
 Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43.
 This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
- KpB2--Keyport Silt Loam, 2 To 5 Percent Slopes Moderately Ero Ded
 Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43.
 This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- KpC2--Keyport Silt Loam, 5 To 15 Percent Slopes, Moderately E Roded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- KrC3--Keyport Silty Clay Loam, 5 To 10 Percent Slopes, Severe Ly Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- KuB--Keyport-Urban Land Complex, 0 To 10 Percent Slopes
 Keyport component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
 This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- Ky--Klej Loamy Sand
 Klej component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .17.
 This soil is somewhat poorly drained. The slowest permeability within 60 inches is very slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is not a hydric soil.
- LeA--Leonardtown Silt Loam, 0 To 2 Percent Slopes
 Leonardtown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
 .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available
 water capacity is very high and shrink swell potential is low. This soil is not flooded and is not
 ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It
 is in nonirrigated land capability class 4w. This component is a hydric soil.

LeB--Leonardtown Silt Loam, 2 To 5 Percent Slopes
Leonardtown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
.43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available
water capacity is very high and shrink swell potential is low. This soil is not flooded and is not
ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It
is in nonirrigated land capability class 4w. This component is a hydric soil.

Ma--Made Land

Made Land component makes up 100 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

MfB2--Magnolia Fine Sandy Loam, 2 To 5 Percent Slopes Moderat Ely Eroded Magnolia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

MgB2--Magnolia Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded
Magnolia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches
is very slow. Available water capacity is very high and shrink swell potential is moderate. This
soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches.
There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not
a hydric soil.

MgC2--Magnolia Silt Loam, 5 To 10 Percent Slopes Moderately E Roded
Magnolia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

MhB2--Manor Loam, 3 To 8 Percent Slopes, Moderately Eroded
Manor component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

MhC2--Manor Loam, 8 To 15 Percent Slopes, Moderately Eroded Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

MhD2--Manor Loam, 15 To 25 Percent Slopes, Moderately Eroded
Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
capability class 4e. This component is not a hydric soil.

MhF2--Manor Loam, 25 To 60 Percent Slopes, Moderately Eroded
Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

MkC--Manor-Urban Land Complex, 8 To 15 Percent Slopes
Manor component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

MlA--Marr Fine Sandy Loam, 0 To 2 Percent Slopes
Marr component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.

MlB2--Marr Fine Sandy Loam, 2 To 6 Percent Slopes, Moderately Eroded Marr component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

MlB3--Marr Fine Sandy Loam, 2 To 6 Percent Slopes, Severely E Roded
Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

M1C2--Marr Fine Sandy Loam, 6 To 12 Percent Slopes, Moderatel Y Eroded
Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
capability class 3e. This component is not a hydric soil.

M1C3--Marr Fine Sandy Loam, 6 To 12 Percent Slopes, Severely Eroded
Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
capability class 4e. This component is not a hydric soil.

M1D3--Marr Fine Sandy Loam, 12 To 20 Percent Slopes, Severely Eroded
Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
capability class 7e. This component is not a hydric soil.

MlE--Marr Fine Sandy Loam, 20 To 35 Percent Slopes
Marr component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .32.
This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

MmA--Matapeake Fine Sandy Loam, 0 To 2 Percent Slopes
Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches
is moderately slow. Available water capacity is very high and shrink swell potential is low. This
soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.

MmB2--Matapeake Fine Sandy Loam, 2 To 5 Percent Slopes, Moder Ately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

- MnA--Matapeake Silt Loam, 0 To 2 Percent Slopes
 Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
 Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches
 is moderately slow. Available water capacity is very high and shrink swell potential is low. This
 soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.
- MnB2--Matapeake Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- MnC2--Matapeake Silt Loam, 5 To 10 Percent Slopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- MnC3--Matapeake Silt Loam, 5 To 10 Percent Slopes, Severely E Roded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- MnD2--Matapeake Silt Loam, 10 To 15 Percent Slopes, Moderatel Y Eroded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- MoB2--Matapeake Silt Loam, Silty Substratum, 2 To 5 Percent S Lopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- MpB--Matapeake-Urban Land Complex, 0 To 5 Percent Slopes
 Matapeake component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- MpC--Matapeake-Urban Land Complex, 5 To 15 Percent Slopes
 Matapeake component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- MrA--Matawan Fine Sandy Loam, 0 To 2 Percent Slopes
 Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

- MrB2--Matawan Fine Sandy Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded
 Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw
 erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60
 inches is very slow. Available water capacity is very high and shrink swell potential is low. This
 soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches.
 There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not
 a hydric soil.
- Mrc2--Matawan Fine Sandy Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Matawan component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- MsA--Matawan Loamy Sand, 0 To 2 Percent Slopes
 Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw
 erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60
 inches is very slow. Available water capacity is very high and shrink swell potential is low. This
 soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches.
 There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not
 a hydric soil.
- MsB--Matawan Loamy Sand, 2 To 5 Percent Slopes
 Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- MtA--Mattapex Fine Sandy Loam, 0 To 2 Percent Slopes
 Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned
 Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within
 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
 low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27
 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This
 component is not a hydric soil.
- MtB2--Mattapex Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded
 Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned
 Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within
 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
 low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27
 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This
 component is not a hydric soil.
- MuA--Mattapex Silt Loam, 0 To 2 Percent Slopes
 Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned
 Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within
 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
 low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27
 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This
 component is not a hydric soil.
- MuB2--Mattapex Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- MvB--Mattapex-Urban Land Complex, 0 To 5 Percent Slopes
 Mattapex component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43.
 This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline
 horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Mw--Mixed Alluvial Land

Mixed Alluvial Land component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil.

MxC3--Monmouth Clay Loam, 5 To 10 Percent Slopes, Severely Er Oded
Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is very slow. Available water
capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not
ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It
is in nonirrigated land capability class 3e. This component is not a hydric soil.

MxD3--Monmouth Clay Loam, 10 To 30 Percent Slopes, Severely E Roded
Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is very slow. Available water
capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not
ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It
is in nonirrigated land capability class 6e. This component is not a hydric soil.

MyA--Monmouth Fine Sandy Loam, 0 To 2 Percent Slopes

Monmouth component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches
is very slow. Available water capacity is very high and shrink swell potential is moderate. This
soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches.
There are no saline horizons. It is in nonirrigated land capability class 1. This component is not
a hydric soil.

MyB2--Monmouth Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded Monmouth component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

MyC2--Monmouth Fine Sandy Loam, 5 To 10 Percent Slopes Modera Tely Eroded Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

MyD2--Monmouth Fine Sandy Loam, 10 To 15 Percent Moderately E Roded
Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43.
This soil is well drained. The slowest permeability within 60 inches is very slow. Available water
capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not
ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It
is in nonirrigated land capability class 4e. This component is not a hydric soil.

MzB2--Muirkirk Loamy Sand, 0 To 5 Percent Slopes, Moderately Eroded
Muirkirk component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is well drained. The slowest permeability within 60 inches is very slow. Available water
capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
The water table is deeper than 6 feet. It is in nonirrigated land capability class 2s. This
component is not a hydric soil.

MzC2--Muirkirk Loamy Sand, 5 To 10 Percent Slopes, Moderately Eroded Muirkirk component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

- Och-Ochlockonee Sandy Loam, Local Alluvium, 0 To 2 Percent Slopes
 Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within
 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This
 soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 48
 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This
 component is not a hydric soil.
- OcB--Ochlockonee Sandy Loam, Local Alluvium, 2 To 5 Percent Slopes
 Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within
 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This
 soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches.
 There are no saline horizons. It is in nonirrigated land capability class 1. This component is not
 a hydric soil.
- Occ--Ochlockonee Sandy Loam, Local Alluvium, 5 To 10 Percent Slopes
 Ochlockonee component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
 .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available
 water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is
 not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons.
 It is in nonirrigated land capability class 1. This component is not a hydric soil.
- OhA--Ochlockonee Silt Loam, Local Alluvium, 0 To 2 Percent S Lopes
 Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within
 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This
 soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 48
 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This
 component is not a hydric soil.
- OhB--Ochlockonee Silt Loam, Local Alluvium 2 To 5 Percent Sl Opes
 Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within
 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This
 soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches.
 There are no saline horizons. It is in nonirrigated land capability class 1. This component is not
 a hydric soil.
- Ok--Ochlockonee, Local Alluvium-Urban Land Complex Ochlockonee, Local A component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- Ol--Othello Fine Sandy Loam
 Othello component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .37. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- Ot--Othello Silt Loam
 Othello component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .37. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- Pr--Plummer And Rutlege Loamy Sands
 Plummer component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .10.
 This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Rutlege component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is very poorly drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil.

RdA--Rumford Loamy Sand, 0 To 2 Percent Slopes
Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil.

RdB2--Rumford Loamy Sand, 2 To 5 Percent Slopes, Moderately E Roded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil.

RdC2--Rumford Loamy Sand, 5 To 10 Percent Slopes, Moderately Eroded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

RdC3--Rumford Loamy Sand, 5 To 10 Percent Slopes, Severely Er Oded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

RdD2--Rumford Loamy Sand, 10 To 15 Percent Slopes, Moderately Eroded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

ReB--Rumford-Evesboro Loamy Sands, 2 To 6 Percent Slopes
Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

ReC--Rumford-Evesboro Loamy Sands, 6 To 12 Percent Slopes
Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

ReD--Rumford-Evesboro Loamy Sands, 12 To 20 Percent Slopes
Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17.
This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

- SaE--Sandy Land, Steep
 Sandy Land component makes up 95 percent of the map unit. The assigned Kw erodibility factor is
 .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid.
 Available water capacity is high and shrink swell potential is low. This soil is not flooded and is
 not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in
 nonirrigated land capability class 7s. This component is not a hydric soil.
- ScB--Sandy And Clayey Land, Gently Sloping
 Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility
 factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately
 rapid. Available water capacity is very high and shrink swell potential is low. This soil is not
 flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It
 is in nonirrigated land capability class 2s. This component is not a hydric soil.
- Scc--Sandy And Clayey Land, Sloping Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- ScD--Sandy And Clayey Land, Moderately Steep Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- SfB2--Sassafras Gravelly Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- SfC2--Sassafras Gravelly Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- SfD2--Sassafras Gravelly Loam, 10 To 15 Percent Slopes, Moder Ately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- SgB2--Sassafras Gravelly Sandy Loam, 2 To 5 Percent Slopes, M Oderately Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- SgC2--Sassafras Gravelly Sand Loam, 5 To 10 Percent Slopes, M Oderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

- SgC3--Sassafras Gravelly Sandy Loam, 5 To 10 Percent, Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- SgD2--Sassafras Gravelly Sandy Loam, 10 To 15 Percent Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. This component is not a hydric soil.
- SgD3--Sassafras Gravelly Sandy Loam, 10 To 15 Percent Slopes, Severely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- SgE--Sassafras Gravelly Sandy Loam, 15 To 30 Percent Slopes
 Sassafras component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .20.
 This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.
- ShA--Sassafras Sandy Loam, 0 To 2 Percent Slopes
 Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned
 Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches
 is moderately slow. Available water capacity is very high and shrink swell potential is low. This
 soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.
- ShB2--Sassafras Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- ShC2--Sassafras Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- ShC3--Sassafras Sandy Loam, 5 To 10 Percent Slopes, Severely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- SkB--Sassafras-Urban Land Complex, 0 To 5 Percent Slopes
 Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28.
 This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

SkC--Sassafras-Urban Land Complex, 5 To 15 Percent Slopes
Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

SkE--Sassafras-Urban Land Complex, 15 To 30 Percent Slopes
Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28.
This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

SlD--Sassafras-Collington-Aura Gravelly Sandy Loams, 12 To 2 0 Percent Slopes Sassafras component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

Collington component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

Aura component makes up 20 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

SlE--Sassafras-Collington-Aura Gravelly Sandy Loams, 20 To 3 5 Percent Slopes Sassafras component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

Collington component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

Aura component makes up 20 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

SmA--Shrewsbury Fine Sandy Loam, 0 To 2 Percent Slopes
Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
.32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow.
Available water capacity is very high and shrink swell potential is low. This soil is not flooded
and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline
horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.

- SmB--Shrewsbury Fine Sandy Loam, 2 To 5 Percent Slopes
 Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
 .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline
 horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- SnA--Shrewsbury Silt Loam, 0 To 2 Percent Slopes
 Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
 .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow.
 Available water capacity is very high and shrink swell potential is low. This soil is not flooded
 and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline
 horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- So--Shrewsbury-Urban Land Complex Shrewsbury component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- SpB--Silty And Clayey Land, Gently Sloping
 Silty And Clayey Land, Gently component makes up 95 percent of the map unit. The assigned Kw
 erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is
 very slow. Available water capacity is very high and shrink swell potential is moderate. This soil
 is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- SpC--Silty And Clayey Land, Sloping
 Silty And Clayey Land, Slopin component makes up 95 percent of the map unit. The assigned Kw
 erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is
 very slow. Available water capacity is very high and shrink swell potential is moderate. This soil
 is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- SpE--Silty And Clayey Land, Steep
 Silty And Clayey Land, Steep component makes up 95 percent of the map unit. The assigned Kw
 erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is
 very slow. Available water capacity is very high and shrink swell potential is moderate. This soil
 is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil.
- StB2--Sunnyside Fine Sandy Loam, 0 To 5 Percent Slopes, Moder Ately Eroded Sunnyside component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- StC2--Sunnyside Fine Sandy Loam, 5 To 10 Percent Slopes, Mode Rately Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- StD2--Sunnyside Fine Sandy Loam, 10 To 15 Percent Slopes, Mod Erately Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

- StE--Sunnyside Fine Sandy Loam, 15 To 30 Percent Slopes
 Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is
 .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available
 water capacity is very high and shrink swell potential is low. This soil is not flooded and is not
 ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated
 land capability class 6e. This component is not a hydric soil.
- SuB2--Sunnyside Loam, 0 To 5 Percent Slopes, Moderately Erode D Sunnyside component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- Suc2--Sunnyside Loam, 5 To 10 Percent Slopes, Moderately Erod Ed Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- SuD2--Sunnyside Loam, 10 To 15 Percent Slopes, Moderately Ero Ded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- SvC3--Sunnyside Sandy Clay Loam, 5 To 10 Percent Slopes, Seve Rely Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- SvD3--Sunnyside Sandy Clay Loam, 10 To 15 Percent Slopes, Sev Erely Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- SwB--Sunnyside-Urban Land Complex, 0 To 5 Percent Slopes
 Sunnyside component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32.
 This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
 capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
 The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
 capability class 2e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- SwC--Sunnyside-Urban Land Complex, 5 To 10 Percent Slopes
 Sunnyside component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32.
 This soil is well drained. The slowest permeability within 60 inches is moderate. Available water
 capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded.
 The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land
 capability class 4e. This component is not a hydric soil.
- Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.
- Sx--Swamp

 Manahawkin component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .05. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil.

Tm--Tidal Marsh

- Westbrook component makes up 100 percent of the map unit. The assigned Kw erodibility factor is This soil is very poorly drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. The soil has a moderately saline horizon. It is in nonirrigated land capability class 8w. This component is a hydric soil.
- WaA--Westphalia Fine Sandy Loam, 0 To 2 Percent Slopes
 Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The
 assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within
 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This
 soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline
 horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil.
- WaB2--Westphalia Fine Sandy Loam, 2 To 6 Percent Slopes, Mode Rately Eroded Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- WaB3--Westphalia Fine Sandy Loam, 2 To 6 Percent Slopes, Seve Rely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- WaC2--Westphalia Fine Sandy Loam, 6 To 12 Percent Slopes, Mod Erately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.
- Wac3--Westphalia Fine Sandy Loam, 6 To 12 Percent Slopes, Sev Erely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- WaD2--Westphalia Fine Sandy Loam, 12 To 20 Percent Slopes, Mo Derately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
- WaD3--Westphalia Fine Sandy Loam, 12 To 20 Percent Slopes, Se Verely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.
- WbB2--Westphalia Very Fine Sandy Loam, 0 To 6 Percent Slopes, Moderately Eroded Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.
- WbC2--Westphalia Very Fine Sandy Loam, 6 To 12 Percent Slopes, Moderately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

WbD2--Westphalia Very Fine Sandy Loam, 12 To 20 Percent Slope S, Moderately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

WeB2--Westphalia-Evesboro Complex, 2 To 6 Percent Slopes, Mod Erately Eroded Westphalia component makes up 50 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

WeC2--Westphalia-Evesboro Complex, 6 To 12 Percent Slopes, Mo Derately Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

WeC3--Westphalia-Evesboro Complex, 6 To 12 Percent Slopes, Se Verely Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

WeD3--Westphalia-Evesboro Complex, 12 To 20 Percent Slopes, S Everely Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil.

Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

WoA--Woodstown Sandy Loam, 0 To 2 Percent Slopes
Woodstown component makes up 95 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within
60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30
inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This
component is not a hydric soil.

WoB2--Woodstown Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded
Woodstown component makes up 95 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within
60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30
inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

WoC2--Woodstown Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded
Woodstown component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .24.
This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow.
Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Wu--Woodstown-Urban Land Complex

Woodstown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

ZZ900--Paved Areas

Paved Areas component makes up 100 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.